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« Model counting = #SAT
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Weighted Model Counting

« Assembly language for non-lifted inference

* Reductions to WMC for inference in
— Bayesian NEetWOrKS (chavira0s, sang05 , Chavira08]
— Factor graphs choi3
— Relational Bayesian networks ichaviraos;
— Probabilistic logic programs rierens 11, Fierens'1s]
— Probabillistic databases (oteanuos, ha11]

o State-of-the-art exact solvers
— Knowledge compilation (WMC — d-DNNF — AC)

Winner of the UAI'O8 exact inference competition!
— DPLL counters
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Weighted First-Order Model Counting

Model = solution to first-order logic formula A

A = vd (Rain(d)
= Cloudy(d))
Days = {Monday
Tuesday}

[VdB’'11, Gogate’11]
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Weighted First-Order Model Counting

Model = solution to first-order logic formula A

A = vd (Rain(d)
= Cloudy(d))

Days = {Monday
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Weighted First-Order Model Counting

Model = solution to first-order logic formula A
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Weighted First-Order Model Counting

Model = solution to first-order logic formula A
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WFOMC Probabillistic Inference

» Assembly language for lifted inference

* Reduction to WFOMC for lifted inference in
— Markov logic networks vds11,cogate 1]

Parfactor graphs a3
Probabllistic logic programs vas1s;

Probabilistic databases (cribkofr14



Assembly language for
high-level probabilistic reasoning

Probabilistic
Parfactor graphs :
logic programs

Relational Bayesian
networks

Probabilistic
databases

Weighted First-Order
Model Counting

Markov Logic




From Probabillities to Weights
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From Probabillities to Weights
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Discussion

Simple idea: replace p, 1-p by w, w
Query computation becomes WFOMC

To obtain a probability space, divide the weight of
each world by Z = sum of weights of all worlds:

Z = (Wytw,) (WotW,) (Watwg) ...

Why weights instead of probabilities?
They can describe complex correlations (next)
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Soft constraint, -
3.75 Smoker(x) AFriend(x,y) = Smoker(yu

[Richardson’06]
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Markov Logic

Capture knowledge through soft constraints (a.k.a. “features”):

° 1~ Smoker(x) = Person(x)

Soft constraint, -
3.75 Smoker(x) AFriend(x,y) :Smoker(w

An MLN is a set of constraints (w, [(x)), where w=weight, [ (x)=FO formula

Weight of a world = product of exp(w), for all MLN rules (w, [(x))
and grounding I (a) that hold in that world

Probability of a world = Weight / Z
Z = sum of weights of all worlds (no longer a simple expression!)

[Richardson’06]



Discussion

* Probabilistic databases = independence
MLN = complex correlations

 To translate weights to probabilities we need
to divide by Z, which often is difficult to
compute

* However, we can reduce the Z-computation
problem to WFOMC (next)
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Z > WFOMC(A)

1. Formula A

If all MLN constraints are hard:

A=A wroemn (VX (X))

If (w;, ['; (X)) Is a soft MLN constraint, then:

a) Remove (w, ['; (x)) from the MLN

b) Add new probabilistic relation F;(x)

c) Add hard constraint («, ¥x (Fi(x) < [;(X)))

2. Weight function w(.)

For all constants A, relations F,,

set  W(F(A)) = exp(w), w(=F,(A)) =1

Theorem: Z = WFOMC(A)

Better rewritings in
[Jha’12],[V.d.Broeck’'14]
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A A eXp(3.75) ! for Smoker, Person, etc,
A B exp(3.75) 1 (i.e. no evidence)
A C exp(3.75) 1 then settheirw=w=1
B A exp(3.75) 1
Z = WFOMC(A)
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— Independent variables

* Weighed FO Model Counting:

— Formula described by a concise FO sentence
— Still independent variables

e MLNSs:
— Weighted formulas
— Correlations!
— Can be converted to WFOMC



Lessons

* Weighed Model Counting:
— Unified framework for probabilistic inference tasks
— Independent variables

* Weighed FO Model Counting:

— Formula described by a concise FO sentence
— Still independent variables

e MLNSs:
— Weighted formulas
— Correlations!
— Can be converted to WFOMC

Tuple-independence is not a severe representational restriction!
It is a convenience for building inference algorithms.




Symmetric vs. Asymmetric

Symmetric WFOMC.:

* In every relation R, all tuples have same weight

« Example: converting MLN “without evidence” into

WFOMC leads to a symmetric weight function aY

Asymmetric WFOMC:

« Each relation R is given explicitly
« Example: Probabllistic Databases
« Example: MLN’s plus evidence

[Gribkoff'14]
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Comparison

Random variable is a

Weights w associated with

Typical query Q is a

Data is encoded into

Correlations induced by

Model generalizes across domains?

Query generalizes across domains?

Sum of weights of worlds is 1 (normalized)?

MLNs Prob. DBs
Ground atom DB Tuple
Formulas DB Tuples
Single atom FO formula/SQL
Evidence (Query) | Distribution
Model formulas Query

Yes No

No Yes

No Yes




