Outline

- Part 1: Motivation
- Part 2: Probabilistic Databases
- Part 3: Weighted Model Counting
- Part 4: Lifted Inference for WFOMC

- Part 5: Completeness of Lifted Inference
- Part 6: Query Compilation
- Part 7: Symmetric Lifted Inference Complexity
- Part 8: Open-World Probabilistic Databases
- Part 9: Discussion & Conclusions

WMC Probabilistic Inference

- Model = solution to a propositional logic formula △
- Model counting = #SAT

 $\Delta = (Rain \Rightarrow Cloudy)$

WMC Probabilistic Inference

- Model = solution to a propositional logic formula △
- Model counting = #SAT
- Weighted model counting (WMC)
 - Weights for assignments to variables
 - Model weight is product of variable weights w(.)

Rain	Cloudy
Т	Т
Т	F
F	Т
F	F

Model?	
Yes	
No	
Yes	
Yes	
+	

Weight		
1 * 3 =	3	
	0	
2 * 3 =	6	
2 * 5 =	10	

WMC Probabilistic Inference

- Model = solution to a propositional logic formula △
- Model counting = #SAT
- Weighted model counting (WMC)
 - Weights for assignments to variables
 - Model weight is product of variable weights w(.)

Rain	Cloudy
Т	Т
Т	F
F	Т
F	F

Weight		
1 * 3 = 3		
0		
2 * 3 = 6		
2 * 5 = 10		
+		

WMC = 19

Weighted Model Counting

- Assembly language for non-lifted inference
- Reductions to WMC for inference in
 - Bayesian networks [Chavira'05, Sang'05, Chavira'08]
 - Factor graphs [Choi'13]
 - Relational Bayesian networks [Chavira'06]
 - Probabilistic logic programs [Fierens'11, Fierens'15]
 - Probabilistic databases [Olteanu'08, Jha'11]
- State-of-the-art exact solvers
 - Knowledge compilation (WMC → d-DNNF → AC)
 Winner of the UAI'08 exact inference competition!
 - DPLL counters

Model = solution to first-order logic formula Δ

```
Δ = ∀d (Rain(d)

⇒ Cloudy(d))
```

Days = {Monday}

Model = solution to first-order logic formula Δ

Model = solution to first-order logic formula Δ

 Δ = ∀d (Rain(d) ⇒ Cloudy(d))

Days = {Monday **Tuesday**}

Rain(M)	Cloudy(M)	Rain(T)	Cloudy(T)	Model?
Т	Т	Т	Т	Yes
Т	F	Т	Т	No
F	Т	Т	Т	Yes
F	F	Т	Т	Yes
Т	Т	Т	F	No
Т	F	Т	F	No
F	Т	Т	F	No
F	F	Т	F	No
Т	Т	F	Т	Yes
Т	F	F	Т	No
F	Т	F	Т	Yes
F	F	F	Т	Yes
Т	Т	F	F	Yes
Т	F	F	F	No
F	Т	F	F	Yes
F	F	F	F	Yes

Model = solution to first-order logic formula \triangle

 Δ = ∀d (Rain(d) ⇒ Cloudy(d))

Days = {Monday **Tuesday**}

Rain(M)	Cloudy(M)	Rain(T)	Cloudy(T)	Model?
Т	Т	Т	Т	Yes
Т	F	Т	Т	No
F	Т	Т	Т	Yes
F	F	Т	Т	Yes
Т	Т	Т	F	No
Т	F	Т	F	No
F	Т	Т	F	No
F	F	Т	F	No
Т	Т	F	Т	Yes
Т	F	F	Т	No
F	Т	F	Т	Yes
F	F	F	Т	Yes
Т	Т	F	F	Yes
Т	F	F	F	No
F	Т	F	F	Yes
F	F	F	F	Yes

Model = solution to first-order logic formula \triangle

Days = {Monday **Tuesday**}

Rain

d	w(R(d))	w(¬R(d))
М	1	2
Т	4	1

Cloudy

d	w(C(d))	w(¬C(d))
М	3	5
Т	6	2

Rain(M)	Cloudy(M)	Rain(T)	Cloudy(T)	Model?
Т	Т	Т	Т	Yes
Т	F	Т	Т	No
F	Т	Т	Т	Yes
F	F	Т	Т	Yes
Т	Т	Т	F	No
Т	F	Т	F	No
F	Т	Т	F	No
F	F	Т	F	No
Т	Т	F	Т	Yes
Т	F	F	Т	No
F	Т	F	Т	Yes
F	F	F	Т	Yes
Т	Т	F	F	Yes
Т	F	F	F	No
F	Т	F	F	Yes
F	F	F	F	Yes

Model = solution to first-order logic formula Δ

Rain

d	w(R(d))	w(¬R(d))
М	1	2
Т	4	1

Cloudy

d	w(C(d))	w(¬C(d))
М	3	5
Т	6	2

Rain(M)	Cloudy(M)	Rain(T)	Cloudy(T)	Model?	Weight
Т	Т	Т	Т	Yes	1 * 3 * 4 * 6 = 72
Т	F	Т	Т	No	0
F	Т	Т	Т	Yes	2 * 3 * 4 * 6 = 144
F	F	Т	Т	Yes	2 * 5 * 4 * 6 = 240
Т	Т	Т	F	No	0
Т	F	Т	F	No	0
F	Т	Т	F	No	0
F	F	Т	F	No	0
Т	Т	F	Т	Yes	1 * 3 * 1 * 6 = 18
Т	F	F	Т	No	0
F	Т	F	Т	Yes	2 * 3 * 1 * 6 = 36
F	F	F	Т	Yes	2 * 5 * 1 * 6 = 60
Т	Т	F	F	Yes	1 * 3 * 1 * 2 = 6
Т	F	F	F	No	0
F	Т	F	F	Yes	2 * 3 * 1 * 2 = 12
F	F	F	F	Yes	2 * 5 * 1 * 2 = 20

Model = solution to first-order logic formula Δ

Days = {Monday **Tuesday**}

Rain

d	w(R(d))	w(¬R(d))
М	1	2
Т	4	1

Cloudy

d	w(C(d))	w(¬C(d))
М	3	5
Т	6	2

Rain(M)	Cloudy(M)	Rain(T)	Cloudy(T)	Model?	Weight
Т	Т	Т	Т	Yes	1 * 3 * 4 * 6 = 72
Т	F	Т	Т	No	0
F	Т	Т	Т	Yes	2 * 3 * 4 * 6 = 144
F	F	Т	Т	Yes	2 * 5 * 4 * 6 = 240
Т	Т	Т	F	No	0
Т	F	Т	F	No	0
F	Т	Т	F	No	0
F	F	Т	F	No	0
Т	Т	F	Т	Yes	1 * 3 * 1 * 6 = 18
Т	F	F	Т	No	0
F	Т	F	Т	Yes	2 * 3 * 1 * 6 = 36
F	F	F	Т	Yes	2 * 5 * 1 * 6 = 60
Т	Т	F	F	Yes	1 * 3 * 1 * 2 = 6
Т	F	F	F	No	0
F	Т	F	F	Yes	2 * 3 * 1 * 2 = 12
F	F	F	F	Yes	2 * 5 * 1 * 2 = 20

WFOMC Probabilistic Inference

- Assembly language for lifted inference
- Reduction to WFOMC for lifted inference in
 - Markov logic networks [VdB'11,Gogate'11]
 - Parfactor graphs [VdB'13]
 - Probabilistic logic programs [VdB'14]
 - Probabilistic databases [Gribkoff'14]

Assembly language for high-level probabilistic reasoning

From Probabilities to Weights

Friend

Х	у	Р
Α	В	p ₁
Α	С	p ₂
В	С	p ₃

From Probabilities to Weights

Friend

X	у	Р
Α	В	\p/
Α	С	2
В	С	/p ₃

From Probabilities to Weights

	Х	у	w(Friend(x,y))	w(¬Friend(x,y))
>	Α	В	$w_1 = p_1$	$w_1 = 1-p_1$
	Α	С	$w_2 = p_2$	w2 = 1-p2
	В	С	$w_3 = p_3$	$ w_3 = 1-p_3 $
	Α	Α	$W_4 = 0$	<u>w</u> ₄ = 1
	Α	С	$w_5 = 0$	<u>w</u> ₅ = 1
		•••		

Discussion

- Simple idea: replace p, 1-p by w, w
- Query computation becomes WFOMC
- To obtain a probability space, divide the weight of each world by Z = sum of weights of all worlds:

$$Z = (w_1 + \underline{w}_1) (w_2 + \underline{w}_2) (w_3 + \underline{w}_3) \dots$$

Why weights instead of probabilities?
 They can describe complex correlations (next)

Capture knowledge through soft constraints (a.k.a. "features"):

Capture knowledge through soft constraints (a.k.a. "features"):

An MLN is a set of constraints (w, $\Gamma(x)$), where w=weight, $\Gamma(x)$ =FO formula

Capture knowledge through soft constraints (a.k.a. "features"):

An MLN is a set of constraints (w, $\Gamma(\mathbf{x})$), where w=weight, $\Gamma(\mathbf{x})$ =FO formula

Weight of a world = product of $\exp(\mathbf{w})$, for all MLN rules $(\mathbf{w}, \Gamma(\mathbf{x}))$ and grounding $\Gamma(\mathbf{a})$ that hold in that world

Capture knowledge through soft constraints (a.k.a. "features"):

An MLN is a set of constraints (w, $\Gamma(\mathbf{x})$), where w=weight, $\Gamma(\mathbf{x})$ =FO formula

Weight of a world = product of $\exp(\mathbf{w})$, for all MLN rules $(\mathbf{w}, \Gamma(\mathbf{x}))$ and grounding $\Gamma(\mathbf{a})$ that hold in that world

```
Probability of a world = Weight / Z
Z = sum of weights of all worlds (no longer a simple expression!)
```

Discussion

- Probabilistic databases = independence
 MLN = complex correlations
- To translate weights to probabilities we need to divide by Z, which often is difficult to compute
- However, we can reduce the Z-computation problem to WFOMC (next)

1. Formula Δ

1. Formula Δ

If all MLN constraints are hard:
$$\Delta = \Lambda_{(\infty,\Gamma(\mathbf{x}))\in MLN} (\forall \mathbf{x} \Gamma(\mathbf{x}))$$

1. Formula Δ

```
If all MLN constraints are hard: \triangle = \bigwedge_{(\infty, \Gamma(\mathbf{x})) \in MLN} (\forall \mathbf{x} \Gamma(\mathbf{x}))
```

If $(\mathbf{w_i}, \Gamma_i(\mathbf{x}))$ is a soft MLN constraint, then:

- a) Remove $(\mathbf{w}_i, \Gamma_i(\mathbf{x}))$ from the MLN
- b) Add new probabilistic relation $F_i(\mathbf{x})$
- c) Add hard constraint $(\infty, \forall \mathbf{x} (\mathbf{F}_i(\mathbf{x}) \Leftrightarrow \mathbf{\Gamma}_i(\mathbf{x})))$

1. Formula Δ

```
If all MLN constraints are hard: \triangle = \bigwedge_{(\infty, \Gamma(\mathbf{x})) \in MLN} (\forall \mathbf{x} \Gamma(\mathbf{x}))
```

If $(\mathbf{w_i}, \Gamma_i(\mathbf{x}))$ is a soft MLN constraint, then:

- a) Remove $(\mathbf{w}_i, \Gamma_i(\mathbf{x}))$ from the MLN
- b) Add new probabilistic relation $F_i(\mathbf{x})$
- c) Add hard constraint $(\infty, \forall \mathbf{x} (\mathbf{F}_i(\mathbf{x}) \Leftrightarrow \mathbf{\Gamma}_i(\mathbf{x})))$

2. Weight function w(.)

```
For all constants A, relations F_i,
set w(F_i(A)) = exp(w_i), w(\neg F_i(A)) = 1
```

Better rewritings in [Jha'12],[V.d.Broeck'14]

1. Formula Δ

If all MLN constraints are hard:
$$\Delta = \Lambda_{(\infty,\Gamma(\mathbf{x}))\in MLN} (\forall \mathbf{x} \Gamma(\mathbf{x}))$$

If $(\mathbf{w_i}, \Gamma_i(\mathbf{x}))$ is a soft MLN constraint, then:

- a) Remove $(\mathbf{w}_i, \Gamma_i(\mathbf{x}))$ from the MLN
- b) Add new probabilistic relation $F_i(\mathbf{x})$
- c) Add hard constraint $(\infty, \forall \mathbf{x} (\mathbf{F}_i(\mathbf{x}) \Leftrightarrow \mathbf{\Gamma}_i(\mathbf{x})))$

2. Weight function w(.)

For all constants **A**, relations F_i , $w(F_i(A)) = exp(w_i), w(\neg F_i(A)) = 1$

Theorem: $Z = WFOMC(\Delta)$

Better rewritings in [Jha'12],[V.d.Broeck'14]

1. Formula Δ

1. Formula Δ

∞ Smoker(x) \Rightarrow Person(x)

1. Formula Δ

∞ Smoker(x) \Rightarrow Person(x)

 $\triangle = \forall x (Smoker(x) \Rightarrow Person(x))$

1. Formula Δ

```
\sim Smoker(x) \Rightarrow Person(x)
```

3.75 Smoker(x) \land Friend(x,y) \Rightarrow Smoker(y)

```
\triangle = \forall x (Smoker(x) \Rightarrow Person(x))
```

1. Formula Δ

```
Smoker(x) ⇒ Person(x)
3.75 \quad \text{Smoker(x)} \land \text{Friend(x,y)} \Rightarrow \text{Smoker(y)}
```

```
\Delta = ∀x (Smoker(x) ⇒ Person(x))
 \wedge ∀x∀y (F(x,y) ⇔ [Smoker(x) \wedge Friend(x,y) ⇒ Smoker(y)])
```

1. Formula Δ

```
\sim Smoker(x) \Rightarrow Person(x)
```

3.75 Smoker(x) \land Friend(x,y) \Rightarrow Smoker(y)

```
\Delta = \forall x \ (Smoker(x) \Rightarrow Person(x))
 \land \ \forall x \forall y \ (F(x,y) \Leftrightarrow [Smoker(x) \land Friend(x,y) \Rightarrow Smoker(y)])
```

2. Weight function w(.)

F

Х	у	w(F(x,y))	w(¬F(x,y))
Α	Α	exp(3.75)	1
Α	В	exp(3.75)	1
А	С	exp(3.75)	1
В	Α	exp(3.75)	1

Note: if no tables given for Smoker, Person, etc, (i.e. no evidence) then set their w = w = 1

1. Formula Δ

```
\sim Smoker(x) \Rightarrow Person(x)
```

3.75 Smoker(x) \land Friend(x,y) \Rightarrow Smoker(y)

```
\Delta = \forall x \ (Smoker(x) \Rightarrow Person(x))
 \land \ \forall x \forall y \ (F(x,y) \Leftrightarrow [Smoker(x) \land Friend(x,y) \Rightarrow Smoker(y)])
```

2. Weight function w(.)

F

X	у	w(F(x,y))	w(¬F(x,y))
Α	Α	exp(3.75)	1
Α	В	exp(3.75)	1
Α	С	exp(3.75)	1
В	Α	exp(3.75)	1

Note: if no tables given for Smoker, Person, etc, (i.e. no evidence) then set their w = w = 1

$$Z = WFOMC(\Delta)$$

Lessons

- Weighed Model Counting:
 - Unified framework for probabilistic inference tasks
 - Independent variables
- Weighed FO Model Counting:
 - Formula described by a concise FO sentence
 - Still independent variables
- MLNs:
 - Weighted formulas
 - Correlations!
 - Can be converted to WFOMC

Lessons

- Weighed Model Counting:
 - Unified framework for probabilistic inference tasks
 - Independent variables
- Weighed FO Model Counting:
 - Formula described by a concise FO sentence
 - Still independent variables
- MLNs:
 - Weighted formulas
 - Correlations!
 - Can be converted to WFOMC

Tuple-independence is not a severe representational restriction! It is a convenience for building inference algorithms.

Symmetric vs. Asymmetric

Symmetric WFOMC:

- In every relation R, all tuples have same weight
- Example: converting MLN "without evidence" into WFOMC leads to a symmetric weight function ¬

Asymmetric WFOMC:

- Each relation R is given explicitly
- Example: Probabilistic Databases
- Example: MLN's plus evidence

х	у	w(F(x,y))	w(¬F(x,y))
Α	Α	exp(3.75)	1
Α	В	exp(3.75)	1
Α	С	exp(3.75)	1
В	Α	exp(3.75)	1
	•		

Comparison

Random variable is a
Weights w associated with
Typical query Q is a
Data is encoded into
Correlations induced by
Model generalizes across domains?
Query generalizes across domains?
Sum of weights of worlds is 1 (normalized)?

MLNs	Prob. DBs
Ground atom	DB Tuple
Formulas	DB Tuples
Single atom	FO formula/SQL
Evidence (Query)	Distribution
Model formulas	Query
Yes	No
No	Yes
No	Yes